Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid.

Identifieur interne : 000373 ( Main/Exploration ); précédent : 000372; suivant : 000374

Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid.

Auteurs : Maria L. Irigoyen [États-Unis] ; Danielle C. Garceau [États-Unis] ; Adriana Bohorquez-Chaux [Colombie] ; Luis Augusto Becerra Lopez-Lavalle [Colombie] ; Laura Perez-Fons [Royaume-Uni] ; Paul D. Fraser [Royaume-Uni] ; Linda L. Walling [États-Unis]

Source :

RBID : pubmed:31996126

Descripteurs français

English descriptors

Abstract

BACKGROUND

Whiteflies are a threat to cassava (Manihot esculenta), an important staple food in many tropical/subtropical regions. Understanding the molecular mechanisms regulating cassava's responses against this pest is crucial for developing control strategies. Pathogenesis-related (PR) protein families are an integral part of plant immunity. With the availability of whole genome sequences, the annotation and expression programs of the full complement of PR genes in an organism can now be achieved. An understanding of the responses of the entire complement of PR genes during biotic stress and to the defense hormones, salicylic acid (SA) and jasmonic acid (JA), is lacking. Here, we analyze the responses of cassava PR genes to whiteflies, SA, JA, and other biotic aggressors.

RESULTS

The cassava genome possesses 14 of the 17 plant PR families, with a total of 447 PR genes. A cassava PR gene nomenclature is proposed. Phylogenetic relatedness of cassava PR proteins to each other and to homologs in poplar, rice and Arabidopsis identified cassava-specific PR gene family expansions. The temporal programs of PR gene expression in response to the whitefly (Aleurotrachelus socialis) in four whitefly-susceptible cassava genotypes showed that 167 of the 447 PR genes were regulated after whitefly infestation. While the timing of PR gene expression varied, over 37% of whitefly-regulated PR genes were downregulated in all four genotypes. Notably, whitefly-responsive PR genes were largely coordinately regulated by SA and JA. The analysis of cassava PR gene expression in response to five other biotic stresses revealed a strong positive correlation between whitefly and Xanthomonas axonopodis and Cassava Brown Streak Virus responses and negative correlations between whitefly and Cassava Mosaic Virus responses. Finally, certain associations between PR genes in cassava expansions and response to biotic stresses were observed among PR families.

CONCLUSIONS

This study represents the first genome-wide characterization of PR genes in cassava. PR gene responses to six biotic stresses and to SA and JA are demonstrably different to other angiosperms. We propose that our approach could be applied in other species to fully understand PR gene regulation by pathogens, pests and the canonical defense hormones SA and JA.


DOI: 10.1186/s12864-019-6443-1
PubMed: 31996126
PubMed Central: PMC6990599


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid.</title>
<author>
<name sortKey="Irigoyen, Maria L" sort="Irigoyen, Maria L" uniqKey="Irigoyen M" first="Maria L" last="Irigoyen">Maria L. Irigoyen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garceau, Danielle C" sort="Garceau, Danielle C" uniqKey="Garceau D" first="Danielle C" last="Garceau">Danielle C. Garceau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bohorquez Chaux, Adriana" sort="Bohorquez Chaux, Adriana" uniqKey="Bohorquez Chaux A" first="Adriana" last="Bohorquez-Chaux">Adriana Bohorquez-Chaux</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Center of Tropical Agriculture (CIAT), Cali, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>International Center of Tropical Agriculture (CIAT), Cali</wicri:regionArea>
<wicri:noRegion>Cali</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lopez Lavalle, Luis Augusto Becerra" sort="Lopez Lavalle, Luis Augusto Becerra" uniqKey="Lopez Lavalle L" first="Luis Augusto Becerra" last="Lopez-Lavalle">Luis Augusto Becerra Lopez-Lavalle</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Center of Tropical Agriculture (CIAT), Cali, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>International Center of Tropical Agriculture (CIAT), Cali</wicri:regionArea>
<wicri:noRegion>Cali</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Perez Fons, Laura" sort="Perez Fons, Laura" uniqKey="Perez Fons L" first="Laura" last="Perez-Fons">Laura Perez-Fons</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Royal Holloway University of London, Egham, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biological Sciences, Royal Holloway University of London, Egham</wicri:regionArea>
<orgName type="university">Université de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fraser, Paul D" sort="Fraser, Paul D" uniqKey="Fraser P" first="Paul D" last="Fraser">Paul D. Fraser</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Royal Holloway University of London, Egham, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biological Sciences, Royal Holloway University of London, Egham</wicri:regionArea>
<orgName type="university">Université de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walling, Linda L" sort="Walling, Linda L" uniqKey="Walling L" first="Linda L" last="Walling">Linda L. Walling</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA. lwalling@ucr.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31996126</idno>
<idno type="pmid">31996126</idno>
<idno type="doi">10.1186/s12864-019-6443-1</idno>
<idno type="pmc">PMC6990599</idno>
<idno type="wicri:Area/Main/Corpus">000494</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000494</idno>
<idno type="wicri:Area/Main/Curation">000494</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000494</idno>
<idno type="wicri:Area/Main/Exploration">000494</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid.</title>
<author>
<name sortKey="Irigoyen, Maria L" sort="Irigoyen, Maria L" uniqKey="Irigoyen M" first="Maria L" last="Irigoyen">Maria L. Irigoyen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garceau, Danielle C" sort="Garceau, Danielle C" uniqKey="Garceau D" first="Danielle C" last="Garceau">Danielle C. Garceau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bohorquez Chaux, Adriana" sort="Bohorquez Chaux, Adriana" uniqKey="Bohorquez Chaux A" first="Adriana" last="Bohorquez-Chaux">Adriana Bohorquez-Chaux</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Center of Tropical Agriculture (CIAT), Cali, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>International Center of Tropical Agriculture (CIAT), Cali</wicri:regionArea>
<wicri:noRegion>Cali</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lopez Lavalle, Luis Augusto Becerra" sort="Lopez Lavalle, Luis Augusto Becerra" uniqKey="Lopez Lavalle L" first="Luis Augusto Becerra" last="Lopez-Lavalle">Luis Augusto Becerra Lopez-Lavalle</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Center of Tropical Agriculture (CIAT), Cali, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>International Center of Tropical Agriculture (CIAT), Cali</wicri:regionArea>
<wicri:noRegion>Cali</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Perez Fons, Laura" sort="Perez Fons, Laura" uniqKey="Perez Fons L" first="Laura" last="Perez-Fons">Laura Perez-Fons</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Royal Holloway University of London, Egham, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biological Sciences, Royal Holloway University of London, Egham</wicri:regionArea>
<orgName type="university">Université de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fraser, Paul D" sort="Fraser, Paul D" uniqKey="Fraser P" first="Paul D" last="Fraser">Paul D. Fraser</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Royal Holloway University of London, Egham, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biological Sciences, Royal Holloway University of London, Egham</wicri:regionArea>
<orgName type="university">Université de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walling, Linda L" sort="Walling, Linda L" uniqKey="Walling L" first="Linda L" last="Walling">Linda L. Walling</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA. lwalling@ucr.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Disease Resistance (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Host-Parasite Interactions (genetics)</term>
<term>Manihot (drug effects)</term>
<term>Manihot (genetics)</term>
<term>Manihot (metabolism)</term>
<term>Manihot (parasitology)</term>
<term>Multigene Family (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (parasitology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide salicylique (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Interactions hôte-parasite (génétique)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (parasitologie)</term>
<term>Manihot (effets des médicaments et des substances chimiques)</term>
<term>Manihot (génétique)</term>
<term>Manihot (métabolisme)</term>
<term>Manihot (parasitologie)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Transcriptome (MeSH)</term>
<term>Étude d'association pangénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Manihot</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Manihot</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Host-Parasite Interactions</term>
<term>Manihot</term>
<term>Oryza</term>
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Interactions hôte-parasite</term>
<term>Maladies des plantes</term>
<term>Manihot</term>
<term>Oryza</term>
<term>Populus</term>
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Manihot</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide salicylique</term>
<term>Manihot</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Manihot</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Manihot</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Genome-Wide Association Study</term>
<term>Genotype</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Reproducibility of Results</term>
<term>Time Factors</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Famille multigénique</term>
<term>Génotype</term>
<term>Phylogenèse</term>
<term>Reproductibilité des résultats</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transcriptome</term>
<term>Étude d'association pangénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Whiteflies are a threat to cassava (Manihot esculenta), an important staple food in many tropical/subtropical regions. Understanding the molecular mechanisms regulating cassava's responses against this pest is crucial for developing control strategies. Pathogenesis-related (PR) protein families are an integral part of plant immunity. With the availability of whole genome sequences, the annotation and expression programs of the full complement of PR genes in an organism can now be achieved. An understanding of the responses of the entire complement of PR genes during biotic stress and to the defense hormones, salicylic acid (SA) and jasmonic acid (JA), is lacking. Here, we analyze the responses of cassava PR genes to whiteflies, SA, JA, and other biotic aggressors.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The cassava genome possesses 14 of the 17 plant PR families, with a total of 447 PR genes. A cassava PR gene nomenclature is proposed. Phylogenetic relatedness of cassava PR proteins to each other and to homologs in poplar, rice and Arabidopsis identified cassava-specific PR gene family expansions. The temporal programs of PR gene expression in response to the whitefly (Aleurotrachelus socialis) in four whitefly-susceptible cassava genotypes showed that 167 of the 447 PR genes were regulated after whitefly infestation. While the timing of PR gene expression varied, over 37% of whitefly-regulated PR genes were downregulated in all four genotypes. Notably, whitefly-responsive PR genes were largely coordinately regulated by SA and JA. The analysis of cassava PR gene expression in response to five other biotic stresses revealed a strong positive correlation between whitefly and Xanthomonas axonopodis and Cassava Brown Streak Virus responses and negative correlations between whitefly and Cassava Mosaic Virus responses. Finally, certain associations between PR genes in cassava expansions and response to biotic stresses were observed among PR families.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study represents the first genome-wide characterization of PR genes in cassava. PR gene responses to six biotic stresses and to SA and JA are demonstrably different to other angiosperms. We propose that our approach could be applied in other species to fully understand PR gene regulation by pathogens, pests and the canonical defense hormones SA and JA.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31996126</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid.</ArticleTitle>
<Pagination>
<MedlinePgn>93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-019-6443-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Whiteflies are a threat to cassava (Manihot esculenta), an important staple food in many tropical/subtropical regions. Understanding the molecular mechanisms regulating cassava's responses against this pest is crucial for developing control strategies. Pathogenesis-related (PR) protein families are an integral part of plant immunity. With the availability of whole genome sequences, the annotation and expression programs of the full complement of PR genes in an organism can now be achieved. An understanding of the responses of the entire complement of PR genes during biotic stress and to the defense hormones, salicylic acid (SA) and jasmonic acid (JA), is lacking. Here, we analyze the responses of cassava PR genes to whiteflies, SA, JA, and other biotic aggressors.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The cassava genome possesses 14 of the 17 plant PR families, with a total of 447 PR genes. A cassava PR gene nomenclature is proposed. Phylogenetic relatedness of cassava PR proteins to each other and to homologs in poplar, rice and Arabidopsis identified cassava-specific PR gene family expansions. The temporal programs of PR gene expression in response to the whitefly (Aleurotrachelus socialis) in four whitefly-susceptible cassava genotypes showed that 167 of the 447 PR genes were regulated after whitefly infestation. While the timing of PR gene expression varied, over 37% of whitefly-regulated PR genes were downregulated in all four genotypes. Notably, whitefly-responsive PR genes were largely coordinately regulated by SA and JA. The analysis of cassava PR gene expression in response to five other biotic stresses revealed a strong positive correlation between whitefly and Xanthomonas axonopodis and Cassava Brown Streak Virus responses and negative correlations between whitefly and Cassava Mosaic Virus responses. Finally, certain associations between PR genes in cassava expansions and response to biotic stresses were observed among PR families.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study represents the first genome-wide characterization of PR genes in cassava. PR gene responses to six biotic stresses and to SA and JA are demonstrably different to other angiosperms. We propose that our approach could be applied in other species to fully understand PR gene regulation by pathogens, pests and the canonical defense hormones SA and JA.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Irigoyen</LastName>
<ForeName>Maria L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garceau</LastName>
<ForeName>Danielle C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bohorquez-Chaux</LastName>
<ForeName>Adriana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>International Center of Tropical Agriculture (CIAT), Cali, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lopez-Lavalle</LastName>
<ForeName>Luis Augusto Becerra</ForeName>
<Initials>LAB</Initials>
<AffiliationInfo>
<Affiliation>International Center of Tropical Agriculture (CIAT), Cali, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perez-Fons</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Royal Holloway University of London, Egham, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fraser</LastName>
<ForeName>Paul D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Royal Holloway University of London, Egham, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walling</LastName>
<ForeName>Linda L</ForeName>
<Initials>LL</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3006-9220</Identifier>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA. lwalling@ucr.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Subcontract from the Natural Resources Institute, Greenwich, UK</GrantID>
<Agency>Bill and Melinda Gates Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Subcontract from National Resources Institute, Greenwich, UK</GrantID>
<Agency>Bill and Melinda Gates Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Subcontract from the Natural Resources Institute, Greenwich, UK</GrantID>
<Agency>Bill and Melinda Gates Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002365" MajorTopicYN="N">Manihot</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cassava</Keyword>
<Keyword MajorTopicYN="N">Defense</Keyword>
<Keyword MajorTopicYN="N">Hormone</Keyword>
<Keyword MajorTopicYN="N">Jasmonic acid</Keyword>
<Keyword MajorTopicYN="N">PR genes</Keyword>
<Keyword MajorTopicYN="N">PR proteins</Keyword>
<Keyword MajorTopicYN="N">Pathogenesis-related</Keyword>
<Keyword MajorTopicYN="N">Pest</Keyword>
<Keyword MajorTopicYN="N">Salicylic acid</Keyword>
<Keyword MajorTopicYN="N">Stress response</Keyword>
<Keyword MajorTopicYN="N">Transcriptome</Keyword>
<Keyword MajorTopicYN="N">Whitefly</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31996126</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-019-6443-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-019-6443-1</ArticleId>
<ArticleId IdType="pmc">PMC6990599</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):600-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Jun;8(6):e24260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23518581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 17;17:363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27189060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Sep 15;32(18):2847-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27207943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Jan 3;443(1):272-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24309116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Feb;57(3):393-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15830129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Aug;32:77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27421107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Biol. 2012 Jun;35(1 (suppl)):260-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22802711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:487-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25494461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Aug 20;10:184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20727162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:317-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2006 Jun;63(12):1370-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16715411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2014 Jun 24;186:61-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24291251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Insect Sci. 2017 Feb;19:70-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28521945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):849-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Feb;19(2):476-489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28494519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2013 Sep 25;4:297</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24093022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Nov 22;7:1732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27920785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Feb;66(2):495-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25540442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 29;7(1):9747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28852026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Aug 23;19(1):632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30139335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Mar;213(4):1632-1641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28116755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 22;274(4):2360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9891003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Biochem Biophys. 2006 Jun;43(3):182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16967908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Jun;31(3):631-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8790295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2016 Sep 20;17:388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27650223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Oct 03;13:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24088323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BioData Min. 2013 Oct 16;6(1):18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24131735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Entomol Res. 2018 Oct;108(5):565-582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29433589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Open Bio. 2019 Feb 20;9(4):814-825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30984554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Jul;47(7):642-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19329332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2016 Jul;129(4):711-726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27138000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2007 Jan;91(1):24-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30781061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1999;44:343-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Insect Biochem Physiol. 2002 Dec;51(4):182-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Nov;33(11):1901-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25120000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:183-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2002 Feb;86(2):187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30823321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):420-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Nov;36(11):1271-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20927641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Dec;53(6):877-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15082932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Nov;84(21):7542-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11655-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:135-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Nov 20;15:1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25412561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1970 Feb;40(2):190-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4191688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 20;9(5):e96642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24846209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2016 Apr;58(4):350-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26467026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Aug 22;13(8):e0202541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30133510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 May;31(5):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22187088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phytopathol (1986). 2017 Dec;165(11-12):707-717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29213187</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Colombie</li>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
<orgName>
<li>Université de Londres</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Irigoyen, Maria L" sort="Irigoyen, Maria L" uniqKey="Irigoyen M" first="Maria L" last="Irigoyen">Maria L. Irigoyen</name>
</noRegion>
<name sortKey="Garceau, Danielle C" sort="Garceau, Danielle C" uniqKey="Garceau D" first="Danielle C" last="Garceau">Danielle C. Garceau</name>
<name sortKey="Walling, Linda L" sort="Walling, Linda L" uniqKey="Walling L" first="Linda L" last="Walling">Linda L. Walling</name>
</country>
<country name="Colombie">
<noRegion>
<name sortKey="Bohorquez Chaux, Adriana" sort="Bohorquez Chaux, Adriana" uniqKey="Bohorquez Chaux A" first="Adriana" last="Bohorquez-Chaux">Adriana Bohorquez-Chaux</name>
</noRegion>
<name sortKey="Lopez Lavalle, Luis Augusto Becerra" sort="Lopez Lavalle, Luis Augusto Becerra" uniqKey="Lopez Lavalle L" first="Luis Augusto Becerra" last="Lopez-Lavalle">Luis Augusto Becerra Lopez-Lavalle</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Perez Fons, Laura" sort="Perez Fons, Laura" uniqKey="Perez Fons L" first="Laura" last="Perez-Fons">Laura Perez-Fons</name>
</region>
<name sortKey="Fraser, Paul D" sort="Fraser, Paul D" uniqKey="Fraser P" first="Paul D" last="Fraser">Paul D. Fraser</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000373 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000373 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31996126
   |texte=   Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31996126" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020